Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity
نویسندگان
چکیده
Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
منابع مشابه
Investigation of the antimicrobial effect of silver doped Zinc Oxide nanoparticles
The antimicrobial effect of metal nanoparticles such as zinc oxide and silver nanoparticles has been taken into great consideration separately during recent years. The useful application of these nanoparticles in the areas of medicine, biotechnology, and professional prevention of microbes motivated us. The aim of this study was to evaluate antibacterial activity properties of silver doped zinc...
متن کاملCharacterization, photocatalytic, and antibacterial activity of Ag–TiO2 nanoparticles prepared by electrical arc discharge method
A simple, inexpensive and one-step synthesis route of Ag-TiO2 nanoparticles by arc discharge method isreported. The resulting nanoparticles were characterized using X-ray diffraction and scanning electronmicroscopy. X-ray diffraction patterns demonstrate dominance of rutile to anatase phase in TiO2 andformation of silver metal on TiO2 after arc discharge process. Scanning electron microscopy im...
متن کاملBio-fabrication of silver nanoparticles using Rosa Chinensis L.extract for antibacterial activities
The purpose of this study was to expand a trouble free biological method for the synthesis of silver nanoparticles (AgNPs) using the leaves extract of Rosa ChinensisL. to act as reducing and stabilizing agent. Water soluble phytochemicals played a vital role for the reduction silver ions into silver nanoparticles. The leaves extract was exposed to silver ions and the resultant biosynthesized Ag...
متن کاملBio-fabrication of silver nanoparticles using Rosa Chinensis L.extract for antibacterial activities
The purpose of this study was to expand a trouble free biological method for the synthesis of silver nanoparticles (AgNPs) using the leaves extract of Rosa ChinensisL. to act as reducing and stabilizing agent. Water soluble phytochemicals played a vital role for the reduction silver ions into silver nanoparticles. The leaves extract was exposed to silver ions and the resultant biosynthesized Ag...
متن کاملAntibacterial Activity of Mesoporous Silica Nanofibers
In this research, the fabrication of MCM-41 mesoporous material nanofibers by an electrospinning technique was performed. The MCM-41 nanofibers (MCM-41 NFs) as a novel host on the incorporation of silver has been studied in [Ag(NH3)2]NO3 precursor solution through the heat-treatment process. The formation of silve...
متن کامل